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rON THE ‘ EORY OF WING SECTIONS WITH PARTICULAR REFERENCE TO THE
LIFT DISTRIBUTION

By THEODO= TIMODO-N

“1
SUMMARY

Thie pape< gives a simple and exact method of caliw-
lating W lifi diehibution on thin wing sections. The
most essentia.!feature of the new theory is the introduc-
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tion of an ‘ideal angle of attack,” this angle being
defined ae t at which the .@o enters the leading edge
smoothly or, ,more precieely, a8 the angle of attack al
which the li~: at the leading edge equals zero. ThA lz~
di8ttibution @ thi.e parh”cular angle ie shown to be a
characteristic ~property of the section and has been
termedthe “baeic diatm”butian.” It ?k8hownthut the @ of
a w“ngaectioti muy alway~ be considered to coneiet of(a)
the basic distribution and (b) the additiomd dtitributiott,
where tlw latt~; ti independent of the mean camberline and
thue identical for all thin wAons. The specijc reasonfor
the poor aerod~namic qualities of thin wing 8&n8 is
pointed out as be-ingclueto thefti thut the additional lifi in
potential $ow become8injinite at the leading edge.

T7ietheory is in conwguence aw?uptedto diwcribe mne
of the properties of adwal mung wctwne. It is edab
liehed thut the .e88ential parameter occurring in this
analyeia h the radius of curvature at th leading edge.
The location and magnitude of the muximum l~t inhm.dy
i8 determined. It ti jkrther pointed ti that the actual
810peof the lift cume is dependent on this parameter.

The theoretical lift dtitibwtion is compared with tti
dietributwn obtained by direct meam-ement on a number
of the more canoentwmd wing 8ectwns. T&I reeuh
check saiiefactorily and may be considered a8 a confir-
mation of the oaJidity of the theory.

The new theory WU be OJzulue in thefurther improve-
ments of airplane un”ng8. It b pointed owi thd air-
plane8 should be operated near the ideal angle of attack.
The theory will &o be of use in cahw?irtingthe .strucium.l
~trengthof un”ng8ections.

INTRODUCTION

The existing theory for thin wing sections ~eads, in
general, ta an infnite velocity around the front edge.
The condition is shown exaggerated in Figure 1. To
avoid this inaccuracy a new condition has to be intro-
duced. This is the requirement of a smooth flow
around the front edge. It will be noticed that this is in
amdogywith the welLlmownKutt a condition for the rear
edge. The new developments Iead directly to the estab-
lishment of an @e of nuximum “entrance eiliciency.”

It has been found possible ta extend the theory ako
to thick or actual wing sections. The most important
parameter in this anaIysis is the radius of curvature
at the leading edge.

Even with the advances made in the fieId of ex~eri-
mental aerodynamics, the mere knowledge of- the __
eqwcted totaI lift and moment of a wing section fur- —
nishes but a poor guidance, if any at all.

The usmd theory of wing sections is only capable of
giving the total lift and the total moment on a wing
section, the new gives also the pressure distribution.

The main object of the study was to establish the
pressure or lift distribution on the actuaI airfofi. On

FIGIJM 1

introducing the requirement of a smooth flow at the
entrance edge the author has been able to determine
the theoretical pressure distribution on a thin wing sec-
tion. This distribution is of interwt in the study of the
properties of a.ctual wing sections of simik basic shape.
This distribution occurs only at a given angle of attack.
This angle, which is a given characteristic of each air-
foiI, has been termed the ideal angle of attack.

It is shown that the lift distribution may be con-
sidered to consist of the basic distribution at the ided
angle plus a given function multiplied by the angle of
attack as ,measured from this ideal angle.

This function has been determined theoretically for
actual wing sections.

Considerable simplification in the method and a
resulting greater applicabiWy of the theoretical deduc-
tions b actuaI testing have been obtained. The
theoretical prediction of the effect of chang&s in the
airfoiI has, in particular, been eimpIified.

The new theory has been successfully applied to some
of the more frequently used wing sections for which
test data were available. For this work we feel greatly
indebted to Mr. R. M. Pinkerton of the Langley
Memorial Aeronautical Laboratory.

It is on a precise knowkdge of the expected individ-
ual rtdw played by each element in their contribution
to the whole that the road to future developments
must be based. As usuaI, it maybe said that no com-
prehension of the effect of arbitrary changes may be
arrived at without the guidance of the theory. It is
the exclusive merit of a rigid them-y to limit the num-
ber of possible mmiablm to a reasonable number, thus
eliminating unnecessmy experimenting, and of guiding
the work into detite channeIe from which ultimately
the useful facts are bound ta emanate.
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ON THE THEORY OF WING SECTIONS WITH PARTICULAR REF CE
TO THE LIFT DISTRIBUTION

PART I

GENERAL f\
In order to avoid any repetition of the theory of the

airfoil as it exists at the present time, we will refer

Y

o
FIGUREi

exclusively to the works of G1auert as givw in Refer-
ence 1.

We will in consequence adopt the nomenclature used
by him throughout this study.~ The system of coor-
dinates is shown in Figure 2.

Glauert’s work is in agreement with the principles
developed by Max M. Munk.

CALCULATION OF THE ANGULAR DISTORTION

The angular distortion c plays an important r81e in
the following the~ry. In fact, if the ~ curve is known
for a wing section, all the characte@tics are obtained
with ease.

Just in the same manner as an airfoil is considered as
a distorted straight line, its almost circular image may
be considered as a distorted cimle.

The angular distortion is given by ~= – z An cos n$;
thb radial distortion by r= 2 Am sin n Owhere

[
A.isgivenas~- ‘rsinnOde.*TLO

We may then write _

C*=
J

–~Zcosn9= ~*rsinnOdti

where the symbols 6%and 0 are used in order to dis-
tinguish between the two dMerent kinds of variables.

This expression can easily be transformed to

e==
J

-:: ~r@l n(d– 6=)+ sin n(o+oz)]do. I

1WMrtheewptlonthatqhasbeanreplacedby iie morelogioal(itr-1and””with
● mrmpondfng to z-O,and the Hft coefdcknt CL is nrad insteadof tha Brtlfsh
KL(CLE2KL). NonclImensiordequatfonsarewedthmngbontthe repmt.

● (Rr$rmrlce1, p. k)
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In ~rder to develop this j.ntegrrd furt.$er we write

{This series is not convergent and it? value is per-
fectly indeterminate.

This difficulty can be avoided, ho~-e~er, by the fol-
lowing stratagem. We write ‘

;. ~=e{s+&+~fz+ . . . j-lx

and
–iSe(z=-e2;’-8tz . . . –e~-lz–e’z

By addition

S(l–et$)=et=-efs’ or S=6*x–e””
, l-e~’

Similarly

:e-la. -& -r: ::’.=’
l–e-f’

-.

* 1 + et= ef”’+ @@-l}’—.
1 –P l–et’

.-

and

where

x--’)
zsinnx=--

+=
efsz+e-qs-l)z

l–ef’

...

.

-:mt;+;.i$
l?rorn” equation I
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The functions ill and i#z containing the arguments
9+6=

g— and ‘~~~, respectively, have i@itely l@h pe-

riods and thus furnish nothing to the value of the inte-
gnd. Therefore

In order to &parate the independent variatdw @and
d= we write I

where A==cot ~andB=oot~. Then

Cot(:+$)+co’(:-a
A-B-l AB+l

‘XTT+-A+B

=(A_B-l) (–A.+B)+(A+.B) (A13+l)
P–A’

q(l + ~)

= 7– .4’
and

This E&es

Using coordinates given as fractions of the chord with
zero at the leading edge (Figure 2),

1–COS 6=2z and sins 8=4z(1-z),

weobtain
o silo

J–
244-4= ~_cot~=— —=1–COS6 23 a?~

dso

Introduced in III, this gives

x xl

● (Rtfmicc 1, p. .%)

1
1 ‘-1●rl = —

ydx
(zl–z).@(l–z)

Iv
r

It is important to notice that the z-&s must coin-
oide with the line joining the ext.rmpities of the meen
camber J.ine as indicated in Figure 2.

The integrand beoomes infinite at the point z =Z1.
The value of the integral is, however, tinite.

Introducing P= —~ –- ~vie have
Jz(l -x)

This relation may aIso be written

That is, from the vahe P= at z is subtracted the
value Pma) at the point 2X1–x, which ~ located
the same distance from the point XI,but in the opposite
direction.

This integrand does not become Wte at any point
O<x< 1, and the integration c-an be performed for
any profle.

The calculated eour-ves for three typical wing sec-
tions are shown in Figures 18, 19, and 20.

CALCULATION OF C, AXD●L

The crdculation of q and ~ is more M&cult, due to
the fact that the integrand becomes -inbite if the
derivative # is difEerent from zero.

Let us caIcdate the oonttibutions to ~ from the
eIement between O and AX where AZ is a ~ery small
quantity.

Assuming y to be a str&mht line between (1and Az,
we observe that the contribution ta the integral,
equation IV, is ,

for Ax= 0.05
A%= – 2.85yu VI

If y is curved upwards between O and 0.05, the con-
tribution to the integral is somewhat linger. %nihwly
we obtain ‘Ah= + 2.85y0.gj es the contribution to ~
from the element adj aoent to the rem edge.

GRAPHICAL EVALUATION OF ex

Plot the function P, see Figge 3. Construct the
curve cfiefdly near O and 1.

To find ~zl dravv lines as shovm in figure. It will be
noticed that the integral

—
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also may be written

r
~,r 1 ‘

i tan a &z VIITJ o

P

!~ \ ~ / ~

[x, PI

d

o—~ %
FICtUEE3

where a is the angle formed by a line drawn from
(z,, 0) to (z, P) as indimtad in Figure 3.

Infinj..t?

FOR AERONAUTICS

values of tan a are
corresponding values of F as

avgided by_sub ImMing
M.icatsd .abovc . Thie

amounts to folding the area around xl and taking the
integral for the resulting diflerenco, I?ig{ue 4. Since
P crosses the x axis ahight angles, it w~ k noticed

.
~

I’M?UEX4 .:=
“i

that ~ “and ●, actually” contain elemen~ ,]f infiite -
height. The area formed is, however, finite and can be
obtained graphically or bv the calculation shuwu above.

.



\

(
1“,

(
(’

/
I REPORT ~Oa 383 .

PON THE HEORY OF WING SECTIONS WITH PARTICULAR REFERENCE TO THE
. I LIFT DISTRIBUTION

~
-.

f
PART II

ANALYSIS OF THE EXISTING THEOBY

PThe nonch ensionaI pressure P as given by Ghmert
may be writ en in the form

!
1 (from reference 1, p. 5) or
#

(ThO function ~~) =11 appew throughout the
work and is given for convenience in Table L)

v

IL 7Z

Now that we have actually been able to determine
the value of the distortion e, we are able to expms P
as a definite function of the position z.

This work will be taken up in Part III.
It is very interesting ti notice that the secmd

function– ~ [(a– c) ~= is vital in determining
u

the pressure distribution on the section, while it does
not dfect the totaI pressure or the lift of the wing.

The integral is identically zero, Figure 5.
The total pressure on the wing is thus

4(CY-1-eJ
Jd

1 :–ldz
ox

given by

=2(a+6JT

fihich is the value of the absolute lift coefficient in
accordance with this theory.

The expression & [(q – e)~z(l –z)] is entirely a

function of the shape of the airfoil and is thus not
altered with a change in the angle of attack.

L
mGmJ5 6

L
FIarBIS7

,-

.-

Let us express the equation

+’=71–72
The distribution of 7, is indicated in Figure 6. It is

tite at tie le- edge and zero at the trailing
edge. The distribution of ~, is indicated approxi-
mately by Figure 7. The due of this function is also
fite and zero at the front and rear edge, respec-
tively, but the net area equak zero.

For a point close to the front edge we are confronted
with the actual determination of the value w —cu ob- --

tained by subtracting 7* from ~l.
415
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This qu~t.ity isdetermined aa follows; .
Let us wrote for a point close to the ongm

The last term @ ~ ~ negligible compared with the

other terms and thereforb

&Az=&z(a+&+;’).

This pressure is zero onIy if ~= – 2a– e,. h all
other cases the pressure at the very edge. is infinite,
indicating that nonpermissible conditions are imposed
by the theory. This relationship could have been
expected. It is possible to show directly that the
front stagnation point occurs at the angle – 2a– q.

In order to obtain smooth flow past the front edge
of the ,jn&itely thin airfoiI it is necessary that the
above relation be satisfied, that is

It is noticed from the expression just developed for
the pressure near the front edge that this requirement
is actually a necessity in order to avoid iniinite pres-
sures at this point. We may even go a step further
in stating that the e.sisting theory of thk wing eec-
tions fails to give the true values of the lift and
moment, except for the definite value of the angle of
attack:

~1= q+cl——
2 x

Let us call this the ideal angle of attack. In all
other cases the ueud theory Ieada ‘to infinite pressure
differences across the leading edge. The assumption
of a noncompressible fluid, on which this theory is
based, is. obviously violated. The theory breaks down
in a precise study of localized effects.

COMMITTEDFOR AERONAUTICS
\

This angle plays in the aerodynamic [theory of air-
tfoils a r81e just as predominant as that Olt the entranco

angle in the theory of turbines. While

r

the theory
of turbines the question of entranco al les is com-
pletely settled, enough thought has probt bly not- been
given to the corresponding problem in a’ rodynamics.

DISCUSSION Or EXPRESSION FOR PR SSURE ON
lVING SECTION ?

.
.

11Glauert gives as expression for the nur, etical value
of the velocity around the airfoil:..., )

.[

“ de
Y cm]

g=V l+(a+e COt@+(a+q)COSCc +-
1

(Referetice I, equation 14). We will obse$e that near
8= r no difficulties are encountered, ainco the infinito
factom” actuidly will cancel each other at~ t?= r due to
the Kuita condition.

As 19~0 we run into difficulties. ‘We{obtain for a
point 9= + AO,— 1 —

Glauert’s method of calculating the pithing moment
on the” basis of equation 14 is not strict)y permissible.
The factor [(a+e) cot 0+ (a+ Fl) coseq t?] can not be
treated as a small quantity near the origin, tind the
squares and products of such large qu antitics cm not
be neg~cted as compared with unity.,’

We bow the mnnerical value of the velocity can not
become less than zero and the corr~~ponding pressure+... .—
not greater than ~ pV. There is VLWa linli~ to the

maximum value of the velocity. khiz ~ilI not miss
1 the sound velocity of the medium, and the gre&wt
~ negative pressure is, in conseque~nce, about one-half
, atmosphere.z

The difEcuMes are, however, dispensed with by
introducing what we will call the front edge condition,

It ti be noticed that if 6 happens to be equal to
– (2a+ e,), there ia no Hte factor in Equation XI.

IDlaregardfng the fact that the factor mentioned above cm not M treated M
a@.1 H the orfgp, be resrdtsmaYbe Wmfdemd w eutmcfanuyeccureta forell
@rIta tieyoiid s=O.1.
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PART III

DIRECT CALCULATION OF THE IDEAL ANGLE OF ATTACK

If the t-curve is not found we may caIculate. cr~as
follows: ~= –X A. cos n o

–q=+A+A1+Aa+ . . . .
–q= ~–A1+A,–4 . . .

– (%~q)=2(Ao+A,+A+ . . . .)

s=2? ‘ ni0(sin06+ain26+ . .).
To

J

~.
This k equal to the imagina~part of; o rd t9ze;” 8with

“n=O, 2, 4, 61 -..1
But Zefu (n=O, 2, 4, 6, . . .)=

I ~-u costl-isino
~=qrn= –2i sin d

Therefore – s(*+6)=;*=rdocot 8

but r= ~+d and cl$=$e

A 4-point method gives the ideal angle in degrees,
with sufficient accuracy as follows:

az”= 623 (Y1– ys) +47 (Y2– yJ

where VI, wZ,V* and VSare the ordinates of the mean
camber line with respect to its chord at z= 0.542,
12.574,87.426, and 99.458 per cent chord, respeot.kely.

PRESSURE DISTRIBUTION Oh’ THE THIN RING AT
==-

Rearranging, we obtain easily from Equation VIII:

+6+41-24]

and with

+krz~+dd.

T@ pressure distribution may, in order to fix our
thoughts, be termed the basic pressure distribution of
the section.

Writing {z= =l?, we have

This is the exact expression for P at the ideal angle of
attack for a thin airfoil. In this expression PI is the
pressure diierence and Ethe distortion at r, q and q
are the values of E at x= O and at z= 1, Iespeotively.
The equation is readily integrated and yields the value
of the lift ~1= r(a – ~). The basic distribution
curves for three airfoiIs are shown in Figures 21, 22,
and 23. The comparison has for cormenience been
made at the same total lift.

It is noted that the center of Iift of the measured
distribution is nearer the leading edge than that of -the
theoretical distribution. It is belie~ed that this effect
is partIy due to the tite aspect ratio of the airfoils on
which the measurements were made. The exact effect
of the finite aspect ratio is not simply to ohange the
direction of flow as considered by the usual theory, but
more preoidy to change the local curvature in a cer-
tain prescribed mrmner. The flow near the leading
edge is km SHected by the “dowmvash” thus produc-
ing a Iift which is greater than that based on the
average direction of flow. Ifear the trailing edge the
reverse is true.

The theory of thin wmg seotions must thus be. based
on the following assumption:

L The flow must leave the trailing edge
smoothIy (Kutta’s condition).

II. The flow must enter the leading edge
smoothIy (front edge condition].

417
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In all other cases the theory leads to i.n&ii% pressure
differences.

The first condition requires a circulation

r=rv(a+~),

while according to condition II, the angle of attack
must be equal to

q+q
~l=——s

2

On basis of the theory developed above, we are
actually able to explain certain properties of the lift
curve. For instance, to obtain an efficient I@h lift
wing section, it is obvious that ~ should be made Iarge.

The circulation at this condition point (I and II
satisfied) is equal h

Note that both al and Lr are functions of the shape
of the foil. It is impossible to devise a more efficient
flow than that satisfying the above conditions.

Thickening the airfoil does not improve the condi-
tion. It only permits a certain violation of condition
II with less disagreeable consequences. This fact

FIGURE8

explains why the Munk theory, acknowledging solely
condition 1, gives bet~ results when applied to thick
airfoils, while the theory actually is developed for
infinitely thin foils.

The fact is that the thickening of the foil makea it
1sss efficient, but gives it a certain immunity against
the losses caused by incorrect flow past the leading
edge. This will be shown later.

The above deductions explain sevend facts relating
to the shape of the lift curve. For instance, why the
most efficiimt angle of incidence, in gemmd, is greater
for a section with a greater curvature at the leading
edge. We know that the minimum friction loss clearly
must be expecti to occur near

The entrance 10SSis evidently a function of Ia– ar~.
The case is quite similar to that of the entrance loss
in turbines. We may w-rite for this loss

L=j3.la-a,]~.

Experience has shown that q is very large for a sharp
leading edge and that it decreases rapidly as the
thickness of the airfoil is increased. It is, however,
difficult to separate this loss experimentally.

CALCULATION OF EXPRESSION FOR THE BASIC LIFT

In mialogy with the calculations for a~ we obtain:

~=–~+A1–Az+ . .
–q)= Z43+A*+A2+ . .

~–%= 2A, +2A8+ . . . . =2(A1+~.+AC+ . ,)

m)=: )Wfifl+s~3e+ . ..) ‘ ‘s
J

4.
or the imaginary part of – rd6Ze’”Rwhe.m ri ==1,3,5, .

To

but

and

s-=+wid+%
8 1 ydz

=+- Toslr$e
and

s ydz
s

1ydx
L1= 1-— ~~--- 0 -F.~ [X(1–Z)]}

Ma

The approximate Gauss’ method gives: L~=69(YI+LIJ
+ 6.8(yi+yi) + 3.6ya where Y8 is taken at x=50 per
cent C.

This function has considerable significance as being
the lift at the ideal angle of attack, or the lift of the
wing when the flow is theoretically correct around the
leading edge.

It is noticed how the elements near front and rear
are of the greatest importance.”

From Equation XVa we obtain

This expression shows that in order to obtain a high
basic lift the angIe near the nose should be steep.
The fact that z appears only in % power, shows that
the steepness need not extend for any length. h
fact, the best airfoil would be the one shown in Figure 8
if it were not for the fact that wo must maintain poten-
tial flow. Experience shows that any great curvature
near the rear edge is poor aerodynamically. It is also
in contradiction with the requirement of a small center
of pressure travel.

ADDITIONAL PRESSURE WHEN THE ANGLE OF INCI-
DENCE IS DIFFERENT FROM THE IDEAL ANGLE

We @l observe from the expression for the pressure
distribution, Equation XIII, that the increase in the
pressure due to a change in ‘“he angle a is equal to

& (a–q) (1–z) or ,
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The expression is, as pointed out, obviousIy far from
giving the physicaI facts.

The in.finite pressure, of course, does not occur. In
the Iimit.ing cme sound velocity is reached, while the
other extreme corresponds to a velocity of zero at the
stagnation point. These facts are neglected in the
present theory.

If the angle of attack is di@rent from a~ we wiU now
consider what actually takes place near the nose. We
restrict ourselves to velocities considerably less than
the velocity of sound.

The velocity of potential flow nem the s~ace of a
circle is gken by the expression:

Let the rear stagnation point occur at @= r.
This condition is satisfied by:

dw
~;= –2iVe@ [sin (a+@) +sina].

For small VSIUCSof a and @ -ivewrite:

dur
1

~= –2iVe~ (2a+@) and ~ =2~(2a+@).

Let us t.rarwform this tide into an eIIipse:

r=z+:l%
We have then

$;=l_:B

df
~=1 –$?(C09 2@–i sin 2@)

df
Z-l –gf(cos 2@–’i sin 2@)

For smalI values of @

d{
~z=l–d(l–%o),

ncg~ecti% quantitiesof higher order than
Further:

dr
1!,T -(1 – ‘)’+ ‘2*6]’”

This gives for the square of the velocity

the first.

near @=O

(2~+@)2
U?=4T’-2 (1–f32+(2r53)2

I’iith @close to unity, we may write:

wf=4v2
(2a+ @J’ (2a+ *)’

(1–19)+ZZ+’ l–p ‘+&.
(–) 2

This expression gives the square of the velocity near
the front edge of a flat elliptical cylinder inched at

* (Rtftrencc 1,qrdon 10.)

an angle a toward. the direction of flow at idnity and
equipped with a circulation su%lcient in magnitude to
Iocate the rear stagnation point at the corresponding .—
end point of the major axis. The flow is indicated
schematically in Figure 9. R&haping of the rear part ...-.
of this section so as to simulate a flat airfoil does not
materiality alter the flow at the front edge.

It maybe shown that:

(1–m’ or ;=; kg ‘i%”n-- ()2

where p is the radius of curvature at the nose and
c the chord.

Consequently:
(2a+@)’.

‘“v 2p+@
c

lVe are more interested in the dHerence behvecn
the pressures at the upper and lower side of the nose.

.~~.v

FIGURE9

The pressure at @ differs from the total pressure by

and at –@by

p,=(2a–@)’m

2f+@
c

The difference is
8c@

p=~+e
XVII

c

This function has a maximum at& =2FP.

.—

.—

.-

This maximum equals

P m==4~Z or referred to the ideaI angle P.

/IT - .

It may be shown that the point of the airfoiI corre-

spending to @=~ is Iocated at z-~ or at the f~a~

poini of the ellipse.
It wiU be understood that the 10CSIflow vw dOSS fIO ,,._

the nose is not ~ery dependent on the shape of the rear
part of the foil, provided the Kutta condition is satis-
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fied; that is, that the flow leaves the circle at @-T as
prescribed above.

The greatest pressure difference across the nose thus
occurs at a point midway between the center of curva-
ture and the front edge.

Its magnitude equals

It wilI be noticed that the point is usually located
less than 1 per cent from the edge and that the magni-

FIGURE10

tude of this pressure difference for ordinary airfoils is
usually kss than 4g except at the highest angles of
attack. (Table VI.)

In addition to the basic pressure distribution at a]
given in equation XIV, we must add the distribution
due to the difference in the ~glo of attack. The latter
can be obtained as follows: For points near x= O, we
employ Equation XVII and for points near z= 1, we
employ Equation XVI. By applying our analysis to
a straight Joukowsky section, we find further that no
great change in the lift per radian takee place. That is,
the concentrated lift at the nose of a thin section will
appeaq as a distributed lift of approximately the same
magnitude. The center of this lift will then move
from the 25 per cent location to a somewhat greater
value of x. In plotting the curve, we will consider it
sufficiently accurate for most purposes to determine

P.u (Equation XVIII) at z=; and to draw the line

as indicated in Figure 24. The area or total lift per
radian obtained in this manner is less than 27 and
almost exactly equal to the observed values. b ex-
pected increase of lift along the remainder of the airfoil
is, for practical purposes, almost completely nullified
by the frictional losses, Table VI and Figure 25.

The total lift of an airfoil is then mathematically
expressed as:

L= Ll+a, (a–cYI) XIX
There exists a slight increase in this coefficient@ with
a decrease of the radius of curvature at the front edge
(see Figure 25). It thus probably serves no purpose
to refine the above simple method by considering
second-order terms or departures from an elliptical nose.

EXPRESSION OF MOMENT ON THE AIRFOIL

We are on basis of the theory here represented able
to furnish a clear picture of the question of th~ center
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of pressure travel. The total moment is, represented
by: (1). The moment of the basic distribution md
(2) the ~oment of the additional distribu~ion.

The center of pressure of the additional ,tistribution
is for the thin airfoil located at. = 0.25 an@ for a con- .
ventional airfoil (and potential flow) say, at x= 0.30.

The magnitude of the travel of the center: of pressure
thus depends on the. basic lift and on the moment of
the basic lift about this point.

The magnitude of this moment M equals:

J
‘ PI(z– 0.25)dz -.

0

J

-.—- . . ..— ‘4xdx ~
o ~ [(cl–C)JZ(l– Z)]

J

—....-—
=“– Oixd[(c, – E)&(I –x)],

It maybe written

-[ 1S

1
4Z(61– e)~–=) ,+ 4(5 – c)~di- z)dr

o
or

s s *—-..M=4 & – e)~lz(l –x)dx=4 & - ●ir xx

This integral is, in general, positi}-e due to Ihc fact
that ~ ordinarily is the greatest valuo of c, (SCc fig. 5.)

Any great accuracy in the total moment. serves no par-
ticular purpose. The center of pressu-re of the addi-
tional -&tribution is actually located near r= 0.3,

.

co
FIOGREH

-however, and the actual moment of the basic lift then
diffem slightly from Equation XX.

The simple derivation of the abore moment in
accordance with the present theory is, however, a
distinct advantage, and peculiarly enough, the center
of pressure of the ~dditional distribution actually
tends to shift forward, due to the effect of the finite
aspect ratio.

It ii interesting to know wh.Lt lNLppens if we keep
the end valuee fi..ed at q and ~,, but decrease tho area
q —e. This is indicated by the two dotted lines a
and b in Figure 11.

34 is decreased, dec~easing with it the travel of
the center of pressure. tirve a corresponds to M= O
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1
;ri~ a fixe ~center of pressure, b to a small M and
small travel of the center of pressure.

The corr. spending appemnce of the airfoik is

&
given in Fi es 12 and 13. I?igure 12 corresponds

to the ,e a with M= O. S shape is necessary ‘m

I
FIGUBEn

SilOWO by ~1~. The integral contains in this case

a snflicient number of negative ~ements.
hregati~e demerits are avoided in curve b where ● is

stationary for a considerable dist ante from the rear
end. Th leads to the foil shown in Figure 13, vzith

miurm 13

a straight re.8r end inclined at a fixed @e f?. We
know from me~ence hat it is quite ~c~t to
maintain pctentid ffow along the upper side of an

airfoil if the change of ~ect.ion ie abrupt. Far t~s
reason th~ fi)~ ~ Fi.~e 13 ~th no change ~ cur-
vature~ pra~ablysuperior to theoneshowuin Figure 12.

! THE IDEAL AIRFOIL

We keep h mind that vie do not want any large
c“camgein the ~ation of the center of pressure. The

Fmum 14

foil arrived at so. far should look Like the one shown
in F~re 14.

It is evident from the preceding ansJysis that a~ and
LI should correspond to the coefficients at cruising
speed or at the speed for which the greatest efficiency
is desired. With a vreII-rounded front edge the im-
portance of the front edge requirement is lessened,
but not removed. The well-lmowm poor characteris-
tics of an airfoil approaching the mathematically

.

FIGUBZ15 FIQCIU16

“thin” section is due to this came, as has been
pointed out. It maybe expected that the thin motion
at the optimum angle of attack ar in a flow without
great initial turbulence is the best of all airfoils.

But even for thick airfoils this consideration must
be given proper attention. We must give as Iittle
occasion as possible for the creation of disturbances
near the front edge. The study of the airpkme nose

1

design shown in F-e 15 will permit a Iarge “most
&icieIlt” Iift as far ag Me entrance con&tion ig
cmmerned. It leads, however, to a great curvature
of the upper surface of the foil of conventional. thick-
ness. We know from experie~ce that such designs

FIQU’ES17

cause premature turbulence. It is pointed out that a
great increase in maximum lift above that of the oon-
ventiomd airfoiI might be obtained by a foil of the
above proposed type in injunction with an au..ary
deflecting pIate or guiding vane, located above the

.f

co

71

Of 2.34,567 89fa

hQUM 18.—Dl5tortI0ne. CIsrk Y .drfoll

point of the upper surface having the greatest ordinate,
as indicated in Figure 16. This scheme has Iittle
justification or vfdue in conjunction with airfoils of
conventional designs. It is hoped, however, thfit
such design might lead to a thicker and narrower

.f

<0

71

0 ./ .2 J .4 .5 .6 .7 .8 9 LO
FrGu’Ez19.—DMJ2rHonc. N. A. CLA. M+ aIrCoLl

main wing section, which is sometimes desirable for
structural reasons.

AUTOMATIC ADJUS1’MENT OF THE ENTRANCE ANGLE

If a “thin” wing section should be employed
successfully as an airfoil, it would at least be necessary
to have the Ieding edge adjustable. The importance

.

. .._

-..-—

—

.

.. —

of the angle at the very edge has been pointed out be-
fore. This end has unconsciously. been obtained bv ‘—
rounding the front edge. Tl& is equivalent t;
permitting change in the entrance angIe and thus” ~,. —
in the very shape of the foil. To make this point

is thus a proble~ of wnsiderable importance. The \ clear weref-wti Figure 17, where b is the “shape” if the .—
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airfoil at low angles of attack and a at- high angles.
It should be pointed out that the actuql “edge” of

I

eo

-. i

o ./ .2 ,3 .4 .5 .6 .7 ..8 .9 /.0
FIGUBE20.-Dkhrtfon 4. N. A. C. A. 84afrfoil

the section and of the associated “thin” section is the
momentary location of the sta.~ation point. A

/,0
8osic dsfribuiion

P/q

o

—Theoreficd.ak fr:bufibn

P/q \ + C* =1.!2
1.0 - L

o 2 .4 .6 .8 m
FIGum 21,-Lift dfstribntlon, ClnrkY sirfoil

thick nose is thus virtuaIIy equivalent to an adjust-
able front edge. The thicker the section the greater
is the po~ible change in the shape of the~foil. That is,

1.0

P;q

o

4.0

30

20

P/q

/.0

o

I I I [
Bade ofs frib uiion

-

b
& -

~eorefkd dsir,bufim
~0–Meowred

1111 “1 I

—
\

-%\

.2 .4— .6
FIQUEE2Z.-Lfft dlstribnt!on. N. A. O. A. M-6 afrfdl

the efficiency curve is flattened. The thin section
on the other hand does not lend it.self to any such
“flexibility,” hence ita poorer characteristics.

\
}
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The thickness of the foil beyond the noiso is unadmi-

rable aerodynamically, since it causm f L certain in-
1 I I I 1~ IT=- .
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xeas.e in the fluid velocity on both sides of the foil.
The least resistance is, however, introduced if a

—

.-
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&h-shaped dection is used in conjunction with the
desired type; of nose. The pressure distribution at
zero angle of’ a foil sirnihir in shape to the wing section
us regards $ickuess, but with no curvature of the
mean ordinate, may be determined in conjunction
with the testing of each foil.

Abse mrvafwe, g#c

m@JaEx.-sloped themtcurve

SU~SIARY OF NEW FORNIULAS

With R= 4=; q=l

and the z-a- coinciding with the chord of
camber line.

the mesm

~1°= 623 @l—~k)+47@ —3/4) degrees where IAJ W V4J

and ~S are taken at z= 0.542, 12.574, 87.426, and
99.458 per cent chord. (aIis measured with respeot.to ___
the chord of the metm camber line.)

P1=4.R$Z+; [6–%+ (%–2e+~)z] lift intensity at

. a=~l

“~==4 ~ (m– a~) a&litional lift valid for z> 0.1.

Pn=~ a=’

r

maximum lift occurring at z=:
&

.S
M=4 ~(ti-e).l? dx moment at x=:

z,=da-d=f;~g (AL1=23i Ax%)idedlift.

L1=69@, +ys)+6.S@a+y4) +3.6ys

where VZis the ordinate at x=50 per cent chord.

●
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